66 research outputs found

    Rejuvenation and Memory in model Spin Glasses in 3 and 4 dimensions

    Full text link
    We numerically study aging for the Edwards-Anderson Model in 3 and 4 dimensions using different temperature-change protocols. In D=3, time scales a thousand times larger than in previous work are reached with the SUE machine. Deviations from cumulative aging are observed in the non monotonic time behavior of the coherence length. Memory and rejuvenation effects are found in a temperature-cycle protocol, revealed by vanishing effective waiting times. Similar effects are reported for the D=3$site-diluted ferromagnetic Ising model (without chaos). However, rejuvenation is reduced if off-equilibrium corrections to the fluctuation-dissipation theorem are considered. Memory and rejuvenation are quantitatively describable in terms of the growth regime of the spin-glass coherence length.Comment: Extended protocols. Accepted in Phys. Rev. B. 10 postscript figure

    The spin glass transition of the three dimensional Heisenberg spin glass

    Full text link
    It is shown, by means of Monte Carlo simulation and Finite Size Scaling analysis, that the Heisenberg spin glass undergoes a finite-temperature phase transition in three dimensions. There is a single critical temperature, at which both a spin glass and a chiral glass orderings develop. The Monte Carlo algorithm, adapted from lattice gauge theory simulations, makes possible to thermalize lattices of size L=32, larger than in any previous spin glass simulation in three dimensions. High accuracy is reached thanks to the use of the Marenostrum supercomputer. The large range of system sizes studied allow us to consider scaling corrections.Comment: 4 pages, 4 Postscript figures, version to be published in Physical Review Letter

    Spin and chirality orderings of the one-dimensional Heisenberg spin glass with the long-range power-law interaction

    Full text link
    The ordering of the one-dimensional Heisenberg spin glass interacting via the long-range power-law interaction is studied by Monte Carlo simulations. Particular attention is paid to the possible occurrence of the ``spin-chirality decoupling'' for appropriate values of the power-law exponent \sigma. Our result suggests that, for intermediate values of σ\sigma, the chiral-glass order occurs at finite temperatures while the standard spin-glass order occurs only at zero temperature.Comment: Proceedings of the Highly Frustrated Magnetism (HFM2006) conference. To appear in a special issue of J. Phys. Condens. Matte

    Three-dimensional Heisenberg spin glass under a weak random anisotropy

    Full text link

    The critical behavior of 3D Ising glass models: universality and scaling corrections

    Full text link
    We perform high-statistics Monte Carlo simulations of three three-dimensional Ising spin-glass models: the +-J Ising model for two values of the disorder parameter p, p=1/2 and p=0.7, and the bond-diluted +-J model for bond-occupation probability p_b = 0.45. A finite-size scaling analysis of the quartic cumulants at the critical point shows conclusively that these models belong to the same universality class and allows us to estimate the scaling-correction exponent omega related to the leading irrelevant operator, omega=1.0(1). We also determine the critical exponents nu and eta. Taking into account the scaling corrections, we obtain nu=2.53(8) and eta=-0.384(9).Comment: 9 pages, published versio

    Phase transition in the three dimensional Heisenberg spin glass: Finite-size scaling analysis

    Get PDF
    We have investigated the phase transition in the Heisenberg spin glass using massive numerical simulations to study larger sizes, 48x48x48, than have been attempted before at a spin glass phase transition. A finite-size scaling analysis indicates that the data is compatible with the most economical scenario: a common transition temperature for spins and chiralities.Comment: Version to appear in Phys. Rev.

    A new humanized antibody is effective against pathogenic fungi in vitro

    Get PDF
    Invasive fungal infections mainly affect patients undergoing transplantation, surgery, neoplastic disease, immunocompromised subjects and premature infants, and cause over 1.5 million deaths every year. The most common fungi isolated in invasive diseases are Candida spp., Cryptococcus spp., and Aspergillus spp. and even if four classes of antifungals are available (Azoles, Echinocandins, Polyenes and Pyrimidine analogues), the side effects of drugs and fungal acquired and innate resistance represent the major hurdles to be overcome. Monoclonal antibodies are powerful tools currently used as diagnostic and therapeutic agents in different clinical contexts but not yet developed for the treatment of invasive fungal infections. In this paper we report the development of the first humanized monoclonal antibody specific for beta-1, 3 glucans, a vital component of several pathogenic fungi. H5K1 has been tested on C. auris, one of the most urgent threats and resulted efficient both alone and in combination with Caspofungin and Amphotericin B showing an enhancement effect. Our results support further preclinical and clinical developments for the use of H5K1 in the treatment of patients in need

    Ianus: an Adpative FPGA Computer

    Full text link
    Dedicated machines designed for specific computational algorithms can outperform conventional computers by several orders of magnitude. In this note we describe {\it Ianus}, a new generation FPGA based machine and its basic features: hardware integration and wide reprogrammability. Our goal is to build a machine that can fully exploit the performance potential of new generation FPGA devices. We also plan a software platform which simplifies its programming, in order to extend its intended range of application to a wide class of interesting and computationally demanding problems. The decision to develop a dedicated processor is a complex one, involving careful assessment of its performance lead, during its expected lifetime, over traditional computers, taking into account their performance increase, as predicted by Moore's law. We discuss this point in detail

    An in-depth view of the microscopic dynamics of Ising spin glasses at fixed temperature

    Full text link
    Using the dedicated computer Janus, we follow the nonequilibrium dynamics of the Ising spin glass in three dimensions for eleven orders of magnitude. The use of integral estimators for the coherence and correlation lengths allows us to study dynamic heterogeneities and the presence of a replicon mode and to obtain safe bounds on the Edwards-Anderson order parameter below the critical temperature. We obtain good agreement with experimental determinations of the temperature-dependent decay exponents for the thermoremanent magnetization. This magnitude is observed to scale with the much harder to measure coherence length, a potentially useful result for experimentalists. The exponents for energy relaxation display a linear dependence on temperature and reasonable extrapolations to the critical point. We conclude examining the time growth of the coherence length, with a comparison of critical and activated dynamics.Comment: 38 pages, 26 figure

    Matching microscopic and macroscopic responses in glasses

    Get PDF
    We first reproduce on the Janus and Janus II computers a milestone experiment that measures the spin-glass coherence length through the lowering of free-energy barriers induced by the Zeeman effect. Secondly we determine the scaling behavior that allows a quantitative analysis of a new experiment reported in the companion Letter [S. Guchhait and R. Orbach, Phys. Rev. Lett. 118, 157203 (2017)]. The value of the coherence length estimated through the analysis of microscopic correlation functions turns out to be quantitatively consistent with its measurement through macroscopic response functions. Further, non-linear susceptibilities, recently measured in glass-forming liquids, scale as powers of the same microscopic length.Comment: 6 pages, 4 figure
    • …
    corecore